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Abstract

This paper addresses the existence and implementation of the infinite horizon controller
for the case of active steady-state constraints. The case of active steady-state constraints is
important because, in many practical applications, controllers are required to operate at the
boundary of the feasible region (for instance, in order to maximize global economic objectives).
For this case, the usual finite horizon parameterizations with terminal cost cannot be applied
since the origin lies on the boundary of the feasible region, and only suboptimal solutions are
available.

We propose here an iterative algorithm that generates an upper bound and a lower bound
finite horizon approximation to the optimal solution. We show convergence of these boundary
approximations to the optimal solution as the horizon increases is shown. The difference between
the upper and lower bound solutions is used to bound the difference between the approximating
solution and the optimal one. The algorithm provides a solution that is guaranteed to be within
a user specified tolerance of the optimal solution. A numerical example with comparison between
optimal and suboptimal controllers is presented.

Index terms – Model Predictive Control, Steady-state constraints, Optimal Control
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1 Introduction

Model Predictive Control (MPC) is a technique in which a process model is used to forecast future

process behavior, and the sequence of future control inputs is computed as the solution to an

open-loop optimization problem. The first element of the optimal input sequence is used as the

process input. The remaining elements of the input sequence are discarded and the optimization

is repeated at each sampling time. Feedback from measurements is considered by correcting the

model prediction, based on the error between the measurement and prediction. Many methods are

available for this correction. Several recent reviews [1, 2, 3] summarize the theoretical formulations

and industrial implementations of MPC.

In this paper, we consider the infinite horizon formulation of model predictive control (IHMPC)

and address the case of constraints that are active at steady state. Process constraints arise both

from physical limitations (for example, a valve can be at maximum fully open and at minimum

totally closed) and from safety and performance specifications. Most papers on constrained infinite

horizon MPC rely on the assumption that the origin is in the interior of the feasible region [4, 5,

6, 7, 8]. It is frequently the case, however, that in order to maximize performance objectives, the

MPC controller operates at the boundary of the feasible region with respect to both input and

output constraints. Moreover, when a nonzero disturbance enters the process, it is often the case

that one or more manipulated inputs ride at their corresponding saturation values during a period

of steady-state operation. These cases give rise to problem formulations in which the origin lies on

the boundary of the feasible region. This situation was treated in [9], which provides a suboptimal

solution for this problem. The main contribution of this paper is to provide an algorithm for finding

the optimal solution of the constrained infinite horizon optimization problem.

The paper is organized as follows. In Section 2, we recall the formulation of the infinite horizon

controller, presenting the common finite parameterization with terminal constraint and discussing

feasibility limitations. In Section 3, we discuss the proposed algorithm and prove its convergence

to the optimal solution. Some implementation issues are addressed in Section 4 and we present an

application of this method in Section 5. Finally, in Section 6, we summarize the main results of

this work. Some definitions and results for infinite dimensional quadratic programs are reported in

Appendix A, while some existence issues are addressed in Appendix B.

2 Formulation of the problem

2.1 Infinite Horizon Model Predictive Control

In this paper we consider time-invariant, linear, discrete systems described by the following model:

xk+1 = Axk + Buk

yk = Cxk (2.1)
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in which xk ∈ Rn is the state vector, uk ∈ Rm is the input vector and yk ∈ Rp is the output vector.

It is assumed that the pair (A,B) is stabilizable and the pair (C,A) is detectable.

When a complete measurement of the state vector is not available, a state estimator is required.

Estimation is not germane to the subject of this paper and we assume simply that a Kalman filter

is used, which provides at each sampling time an estimate of xk given the plant measurements

yk. In the presence of plant-model mismatch or unmodeled disturbances, a disturbance model is

required to obtain offset-free control. Several kinds of disturbance models can be used to achieve

this goal. Here we consider the well known output disturbance model defined by the following

xk+1 = Axk + Buk,

pk+1 = pk,

yk = Cxk + pk. (2.2)

Given the current disturbance estimate, pk, the steady-state targets are computed by solving

the following optimization problem [9]:

min
xs,k,us,k,ys,k,η

1
2

{
ηT Qsη + (us,k − ū)T Rs(us,k − ū)

}
+ qT

s η (2.3)

subject to:

xs,k = Axs,k + Bus,k,

ys,k = Cxs,k + pk,

ȳ − η ≤ ys,k ≤ ȳ + η, η ≥ 0,

umin ≤ us,k ≤ umax, ymin ≤ ys,k ≤ ymax,

in which Qs and Rs are positive definite matrices, ȳ and ū are the desired targets for output

and input, respectively. These targets may be computed by a global economic optimizer, which

supervises the MPC controller. We assume that ymin < ymax, umin < umax. For appropriate choice

of qs, the linear penalty qT
s η guarantees that the output slack variable η is zero whenever it is

possible to use this value without violating feasibility; that is, whenever the target value ȳ is a

feasible choice for ys,k.

The control action is computed from the minimization of the following infinite horizon quadratic

objective function:

O(N) : min
{xk+j ,uk+j ,yk+j ,∆uk+j}∞j=0

1
2

∞∑
j=0

(yk+j − ys,k)T Q(yk+j − ys,k)+

(uk+j − us,k)T R(uk+j − us,k) + ∆uT
k+jS∆uk+j (2.4a)

subject to

xk+j+1 = Axk+j + Buk+j , j = 0, 1, 2, . . . , (2.4b)
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yk+j = Cxk+j + pk, j = 0, 1, 2, . . . , (2.4c)

umin ≤ uk+j ≤ umax, j = 0, 1, 2 . . . , (2.4d)

−∆umax ≤ ∆uk+j ≤ ∆umax, j = 1, 2, . . . , (2.4e)

ymin ≤ yk+j ≤ ymax, j = 0, 1, 2, . . . , (2.4f)

in which ∆uk+j , uk+j − uk+j−1 and ∆umax > 0. We assume that Q is positive definite, R and S

are positive semidefinite, and R or S is positive definite.

By using the steady-state targets, we have that

yk+j − ys,k = C(xk+j − xs,k) (2.5)

Thus, we rewrite the infinite horizon objective function in a more convenient form. Consider the

following new variables:

wj =
[

xk+j − xs,k

uk+j−1 − us,k

]
, vj = uk+j − us,k, A←

[
A 0
0 0

]
, B ←

[
B
I

]
, (2.6)

C ←
[
C 0

]
, Q←

[
CT QC 0

0 S

]
, R← R + S, M =

[
0
−S

]
,

D =
[

I
−I

]
, d =

[
umax − us,k

−umin + us,k

]
, E =

[
I
−I

]
, G =

[
0 I
0 −I

]
, e =

[
∆umax

∆umax

]
,

H =
[

C 0
−C 0

]
, h =

[
ymax − ys,k

−ymin + ys,k

]
.

It follows from (2.6) that the “new” R is positive definite since either the “old” R or the “old”

S is positive definite. From the steady-state target calculation (2.3) we have that d ≥ 0, h ≥ 0.

Moreover, since ∆umax > 0, we have that e > 0. By substituting into (2.4), we find that the optimal

control problem requires the minimization of the following infinite horizon objective function:

O(N) : min
{wj ,vj}∞j=0

1
2

∞∑
j=0

wT
j Qwj + vT

j Rvj + 2wT
j Mvj (2.7a)

subject to:

w0 = winit, wj+1 = Awj + Bvj , j = 0, 1, 2, . . . , (2.7b)

Dvj ≤ d, j = 0, 1, 2, . . . , (2.7c)

Evj −Gwj ≤ e, j = 0, 1, 2, . . . , (2.7d)

Hwj ≤ h, j = 0, 1, 2, . . . , (2.7e)

The optimization problem (2.7) may be infeasible due to the presence of input and state constraints.

For example, a disturbance may enter the plant and cause the current state w0 to leave the feasible

region. The problem of feasibility for MPC has been addressed in several ways [6, 10, 11, 12]. Any
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of these state constraint softening approaches can be incorporated into the methodology proposed

here.

Therefore, we assume that, given a winit, a sequence {vj , wj}∞j=0 exists, which is feasible with

respect to constraints (2.7b) (2.7c), (2.7d), (2.7e) and gives a finite value of the objective function

in (2.7). From a physical point of view, we assume that a sequence of inputs exists that is able

to bring the system to the origin while respecting input and state constraints. This assumption

is commonly referred to as constrained stabilizability. We also assume that the pair (Q1/2, A) is

detectable. This assumption prevents unstable modes evolving without appearing in the objective

function. This assumption implies that, if a feasible sequence exists, then wj → 0, vj → 0 as j →∞
[8].

2.2 Finite parameterization of the optimal control problem

The infinite horizon problem in (2.7) was addressed in several ways [5, 4, 13, 7, 8]. The key step in

these analyses is to recognize that inequality constraints remain active only for a finite number of

sampling times while the states and the inputs are approaching the origin.

The solution of the unconstrained infinite horizon problem is the well known linear feedback

control law:

vj = −Kwj , (2.8)

in which K is computed from the solution of the discrete-algebraic Riccati equation. For nonlinear

systems, Michalska and Mayne [14] present the “dual-mode” controller in which the optimal linear

control law in (2.8) is appended to the input sequence after a finite horizon. The same idea is used

for linear systems [7, 8], where the following finite horizon objective function is used as replacement

of (2.7):

min
{wj}N

j=0,{vj}N−1
j=0

1
2

N−1∑
j=0

{
wT

j Qwj + vT
j Rvj + 2wT

j Mvj

}
+

1
2
wT

NΠwN (2.9a)

subject to:

w0 = winit, wj+1 = Awj + Bvj , j = 0, 1, 2, . . . , N − 1, (2.9b)

Dvj ≤ d, j = 0, 1, 2, . . . N − 1, (2.9c)

Evj −Gwj ≤ e, j = 0, 1, 2, . . . N − 1, (2.9d)

Hwj ≤ h, j = 0, 1, 2, . . . N, (2.9e)

in which the cost-to-go Π is the solution of the discrete-algebraic Riccati equation. In addition to

constraints (2.9c), (2.9d) and (2.9e), the final state wN is required to be in the following positive

invariant convex set [15]:

O =
{

w|H̃(A−BK)iw ≤ h̃ ∀i ≥ 0
}

, (2.10)
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in which

H̃ =

 −DK
−(EK + G)

H

 ; h̃ =

d
e
h

 .

If the final state wN is in the invariant set defined by (2.10), the optimal unconstrained control law

(2.8) yields a solution that satisfies state and input constraints at all future sampling times. When

the origin is in the relative interior of the feasible region, which is true if and only if d, e and h are

strictly positive, the existence of a nontrivial invariant set is guaranteed.

When the origin lies inside the feasible region for (2.7), we may construct a solution for the

infinite-horizon problem (2.7) from the solution of the finite-horizon problem (2.9) provided that

the horizon index N is sufficiently large. Typically, one solves (2.9) for some N and then checks to

see whether wN lies in the output admissible set O. If so, it can be shown that the optimal values

of wj , j = 0, 1, 2, . . . , N and vj , j = 0, 1, 2, . . . , N − 1 are identical for (2.7) and (2.9). Otherwise,

one increases the value of N in (2.9) and repeats the process.

When state constraints are active at steady state, arbitrarily small constant disturbances would

render the hard constrained problem infeasible, which means that there is no feasible sequence that

brings the system to the origin without persistently violating the active constraints permanently.

Therefore, we assume that state constraints are not active at steady state. In other words, it is

assumed that the elements of h (but not of d) in (2.7e) or (2.9e) are all strictly positive. Moreover,

velocity constraints are never active at steady state, since e is positive by definition.

3 Optimal solution of the infinite horizon problem

In this section, we introduce a method for finding an approximate solution of the problem (2.7) in

the case in which some constraints are active at steady state, so that the origin lies on the boundary

of the feasible region. Our approach is to construct two problems that approximate (2.7) and for

which solutions can be calculated – one of which has an optimal objective value that is an upper

bound for the optimal objective of (2.7) and the other a lower bound. By showing that these two

bounds approach each other as N → ∞, we obtain increasingly accurate estimates of the optimal

objective for (2.7). Moreover, we use the difference between the upper and lower bound objective

functions to obtain a bound on the difference between the solution of the approximating problem

and the solution of (2.7).

3.1 Upper bound on the optimal solution

An upper bound on the optimal objective Φ∗ of (2.7) can be computed by using the method

proposed in [9]. In this approach, a suboptimal solution to (2.7) is found by restricting the evolution

of the input and state trajectories to the null space of the active steady-state constraints, after the

finite horizon N > 0. This solution is found by minimizing the following infinite horizon objective
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function:

U(N) : min
{wj ,vj}∞j=0

1
2

∞∑
j=0

wT
j Qwj + vT

j Rvj + 2wT
j Mvj (3.1a)

subject to (2.7b), (2.7c), (2.7d), (2.7e) (3.1b)

and

D̄vj = 0, j = N,N + 1, . . . , (3.1c)

where D̄ denotes the row sub-matrix of D corresponding to input inequality constraints active at

steady state, that is the rows of D whose corresponding elements of d are zero.

Let Φu
N be the optimal objective value for U(N) in (3.1). Since (3.1) has more constraints than

(2.7), its feasible region is smaller, so we have:

Φ∗ ≤ Φu
N . (3.2)

We can reformulate the infinite horizon problem (3.1) as a finite-horizon problem that can be

solved by practical means as follows:

min
{wj}N

j=0,{vj}N−1
j=0

1
2

N−1∑
j=0

{
wT

j Qwj + vT
j Rvj + 2wT

j Mvj

}
+

1
2
wT

N Π̄wN (3.3a)

subject to (2.9b), (2.9c), (2.9d), (2.9e) (3.3b)

where the cost-to-go matrix Π̄ is associated with the unconstrained control law:

vj = −K̄wj . (3.4)

The computation of K̄ is described in [9]. In order for such a linear control law to exist, the

system must be stabilizable in the null space of the active steady-state constraints. In some cases,

this condition requires the controller to zero the unstable modes that are not controllable in this

subspace. When all input constraints are active at steady state, it is necessary to zero all the

unstable modes and the upper bounding problem results in the controller discussed in [13]. In

Appendix B it is shown that the upper bounding problem (3.3) is feasible for N sufficiently large

under the assumption of the existence of a feasible sequence for the optimal problem (2.7).

The problems (3.1) and (3.3) are identical in the sense that the solution components v0, v1, . . . , vN−1

are the same for each. We compute the remaining components by using the unconstrained evolution

of the system under the feedback gain K̄:

vj = −K̄wj j = N,N + 1, . . . , (3.5a)

wj+1 = Awj + Bvj j = N,N + 1, . . . (3.5b)

If the final state wN does not lie in the output admissible set for the subset of inequalities not

active at steady state under the feedback gain K̄ ([9], [15]), the horizon N must be increased in

order for the solution components of (3.1) and (3.3) to be equal.
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3.2 Lower bound on the optimal solution

A lower bound on the optimal objective Φ∗ of (2.7) can be found by minimizing the following

infinite horizon objective function:

L(N) : min
{wj ,vj}∞j=0

1
2

∞∑
j=0

wT
j Qwj + vT

j Rvj + 2wT
j Mvj (3.6a)

subject to (2.7b), (2.9c), (2.9d), (2.9e). (3.6b)

Notice that constraints (2.9c), (2.9d), (2.9e) are enforced over a finite horizon N only.

Let Φl
N be the optimal objective value for L(N). Since (3.6) has fewer constraints than (2.7),

it is clear that

Φl
N ≤ Φ∗, ∀N > 0. (3.7)

The infinite horizon problem (3.6) can be solved by using the finite parameterization in (2.9),

without adding the constraint on the final state. That is, we solve the following problem:

min
{wj}N

j=0,{vj}N−1
j=0

1
2

N−1∑
j=0

{
wT

j Qwj + vT
j Rvj + 2wT

j Mvj

}
+

1
2
wT

NΠwN (3.8a)

subject to (2.9b), (2.9c), (2.9d), (2.9e). (3.8b)

The solution components v0, v1, . . . , vN−1 are the same for (3.6) and (3.8). We obtain vN , vN+1, . . . ,

from (3.8) by using the unconstrained evolution:

vj = −Kwj j = N,N + 1, . . . , (3.9a)

wj+1 = Awj + Bvj j = N,N + 1, . . . (3.9b)

3.3 Convergence of the Optimal Sequences

In this section we show that v0 obtained from each of the three problems (2.7), (3.1), (3.6) converges

to the same point as N →∞. We prove the result by treating (2.7), (3.1), (3.6) as strictly convex

quadratic programs in the variable

z = (v0, v1, . . .) ∈ `2,

where

`2 =

{
z = (z1, z2, . . . ) | zi ∈ R, i = 1, 2, . . . ;

∞∑
i=1

z2
i <∞

}

=

(v0, v1, v2, . . . ) | vj ∈ Rm, j = 0, 1, . . . ;
∞∑

j=0

‖vj‖22 <∞

 . (3.10)
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By using the state equation to eliminate wj for j = 1, 2, . . ., all three problems (2.7), (3.1), (3.6)

have the following form:

min
z

f(z) =
1
2
〈z, Uz〉+ 〈c, z〉, subject to z ∈ C, (3.11)

where C is a closed, convex subset of `2. See Appendix A.1 for further details and results on

quadratic programs on the space `2.

Note that the restriction (3.10) does not hamper our ability to consider interesting points. An

input sequence {vj = uk+j − us,k}∞j=0 for which
∑∞

j=0 ‖vj‖22 =∞ is such that limj→∞ uk+j 6= us,k,

which implies that limj→∞ yk+j 6= ys,k (this property follows from unicity of the solution of the

target calculation problem [9]). Therefore, the objective function in (2.4) (and the equivalent one in

(2.7)) would be infinite, since Q in (2.4) is positive definite and all the other terms are nonnegative.

In describing the limiting behavior of the solutions of the problems (3.1) and (3.6) as N →
∞, we use results from Appendix A.2 concerning the minimizers of a strictly convex quadratic

function over increasing and decreasing sequences of sets. We consider first the lower-bounding

problem (3.6). Let ĈN denote the feasible set in `2 for this problem; that is, the set of vectors

v = (v0, v1, v2, . . . ) for which there is a w = (w0, w1, w2, . . . ) such that (v, w) satisfy (3.6b) and,

in addition,
∑∞

j=0 ‖vj‖22 < ∞. We obtain (3.6) by setting C = ĈN in (3.11). It is clear that

{ĈN}N=1,2,3... is a decreasing sequence of sets. Moreover, it is easy to see that the set defined by

Ĉ =
⋂

N=1,2,...

ĈN

is simply the feasible set for (2.7); that is, the set of vectors v = (v0, v1, v2, . . . ) for which there

is an w = (w0, w1, w2, . . . ) such that (v, w) satisfy (2.7b), (2.7c), (2.7d), (2.7e) and, in addition,∑∞
j=0 ‖vj‖22 <∞. We obtain (2.7) by setting C = Ĉ in (3.11).

We introduce the notation ẑN = (v̂N,0, v̂N,1, v̂N,2, . . . ) for the minimizer of (3.11) with C = ĈN
(equivalently, (3.6)), and z∗ = (v∗0, v

∗
1, v

∗
2, . . . ) for the minimizer of (3.11) with C = Ĉ (equivalently,

(2.7)). By applying Theorem A.4 from Appendix A.2, we have that

lim
N→∞

ẑN = z∗, Φl
N ↑ Φ∗, (3.12)

where the last limit indicates that the sequence of optimal objective values {Φl
N}N=1,2,... for (3.6)

is increasing and approaches the optimal objective Φ∗ for (2.7) as N →∞.

We turn now to the upper-bounding problem (3.1). Let C̄N denote the feasible set in `2 for this

problem; that is, the set of vectors v = (v0, v1, v2, . . . ) for which there is an w = (w0, w1, w2, . . . )

such that (v, w) satisfy (3.1b), (3.1c), and, in addition,
∑∞

j=0 ‖vj‖22 <∞. We obtain (3.1) by setting

C = C̄N in (3.11). It is clear that {C̄N}N=1,2,3... is an increasing sequence of sets. Its limit, defined

by

C̄ =
⋃

N=1,2,...

C̄N
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is the set of vectors v ∈ `2 for which there is an w such that (v, w) satisfy (3.1b), as well as satisfying

(3.1c) for some value of N . This is not the same set as the feasible set Ĉ for (2.7), in which the

restriction (3.1c) does not appear at all. Hence, the issues in considering the upper-bounding

problem are slightly more subtle than for the lower-bounding problem, and are considered in our

discussion of increasing sequences of sets in Appendix A.2. The remainder of our discussion below

shows that we can apply Theorem A.5 in Appendix A.2 to this case, and arrive at the desired

conclusion that the sequence of minimizers of the upper-bounding problem (3.1) converges to the

minimizer of the optimal problem (2.7).

We can identify the feasible set Ĉ for (2.7) with the set C∗ in (A.20), and identify the minimizer

z∗ of (2.7) with z̄ of (A.20). Note that Ĉ is certainly closed, and that since C̄N ⊂ Ĉ for every N we

certainly have C̄ ⊂ Ĉ. It remains only to show that z∗ ∈ cl(C̄); that is, the solution of (2.7) lies in

the closure of the set formed by the union of the feasible sets for (3.1), over all N .

To show that z∗ lies in the closure of C̄, we construct a sequence {zN} such that

zN ∈ C̄N ⊂ C̄, for all N sufficiently large, and zN → z∗.

Writing

z∗ = (v∗0, v
∗
1, v

∗
2, . . . ),

we have by the definition of Ĉ that there is a vector w∗ = (w∗
0, w

∗
1, w

∗
2, . . . ) such that (v∗, w∗) satisfies

the conditions (2.7b), (2.7c), (2.7d), (2.7e). Since z∗ ∈ `2, we also have that

lim
N→∞

∞∑
j=N

‖v∗i ‖22 = 0. (3.13)

We now construct zN by perturbing the optimal vector z∗ in such a way that all the unstable

modes of the system are zeroed at time N . Theorem B.1 shows that such a zN exists and it is

feasible with respect to all constraints when N > N ′ for some positive N ′. After stage N , the input

is set to zero, and zN is as follows

zN = (vN,0, vN,1, . . . , vN,N−1, 0, . . .).

Clearly zN ∈ C̄N . We can write

‖zN − z∗‖2 ≤
N−1∑
j=0

‖vN,j − v∗j ‖22 +
∞∑

j=N

‖v∗j ‖22

From (B.14) and (B.15), we have that the first term goes to zero as N → ∞ and, from (3.13),

we have that also the second term goes to zero as N → ∞. We conclude that ‖zN − z∗‖ → 0 as

N →∞ and hence that z∗ ∈ cl(C̄), as claimed.

Having verified that the assumptions of Theorem A.5 in Appendix A.2 are satisfied, we can now

apply this theorem to deduce that the sequence of minimizers z̄N of the upper bounding problem
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(3.1) (alternatively, the problem obtained by replaying C by C̄N in (3.11)), approaches the solution

of the optimal problem (2.7), and that the sequence of objective values converges monotonically to

the optimal objective value. That is, we have

lim
N→∞

z̄N = z∗, Φu
N ↓ Φ∗. (3.14)

From (3.12) and (3.14), we have that the solutions ẑN and z̄N of L(N) and U(N), respectively,

approach the solution z∗ of the optimal problem (2.7) as N → ∞. Moreover, we can apply the

result of Theorem A.3 to obtain an estimate of the distance of the first component v̂N,0 from the

solution ẑN of L(N) to the corresponding optimal component v∗0. In Theorem A.3, let the canonical

problem (A.1) correspond to the “most relaxed” problem—the lower bounding problem L(N) in

(3.6). We have from this result that

1
2
α‖ẑN − z∗‖2 ≤ Φ∗ − Φl

N ≤ Φu
N − Φl

N ,

where we use the fact that Φu
N ≥ Φ∗ in the second inequality, and the constant α > 0 is discussed

in Appendix A.1; this gives a useful bound, since Φ∗ itself is not available. Thus we deduce that

‖v̂N,0 − v∗0‖ ≤ ‖ẑN − z∗‖ ≤
[

2
α

(Φu
N − Φl

N )
]1/2

. (3.15)

4 Implementation issues

The results of the previous section suggest an iterative approach to determining an approximation

to the v∗0 component of the solution of the infinite horizon problem (2.7). In this approach, we

solve a series of quadratic programs for the upper and the lower bound problems (3.1) and (3.6).

If the difference between the optimal objective values for these problems does not satisfy a chosen

stopping criterion, the horizon is increased; otherwise the first input vl
0 of the computed sequence

of the lower bound problem (3.6) is accepted as a good approximation to v0, and is injected into

the plant.

As stopping criterion we use a relative difference between the upper and the lower bound

solution:
Φu

N − Φl
N

1 + Φl
N

≤ ρ, (4.1)

where ρ is a small positive number.

At each sampling time we apply the following algorithm, starting with a positive horizon N > 0.

1. Solve (3.3). If the problem is infeasible, go to 5. Otherwise, let Φu
N be the optimal value of

the objective function.

2. If the final state wN does not belong to the output admissible set for constraints inactive at

steady state [9], go to 5.
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3. Solve (3.8). Let Φl
N be the optimal value of the objective function.

4. Check (4.1). If satisfied, go to 6.

5. Increment the horizon N and go to 1.

6. Set v0 equal to the first solution component of (3.8).

The proposed algorithm always terminates because from (3.12) and (3.14) we have that

lim
N→∞

Φu
N − Φl

N = 0, (4.2)

which implies that for any ρ > 0 there exists a N ′ such that for N > N ′ the stopping criterion

(4.1) is satisfied.

Theorem A.3 and (3.15) provide a measure of the distance from the input of the lower bound

solution (3.6) and of the optimal solution (2.7). In (3.15) the monotonicity constant α appears in

the denominator, so the bound is tighter when α is large. A numerical algorithm for computing a

bound on α is available but we omit it for the sake of brevity.

5 Case study

In this section we present a numerical example of a system in which the control action does not

become permanently active or inactive at steady state.

The following system is considered:

xk+1 =

 0.5477 0.8208 0
−0.8208 0.5067 0

0 0 0.8

xk +

1
0
1

uk, (5.1)

yk =
[
1 0 1

]
xk. (5.2)

The controller is required to drive the system state to the origin, from the initial state x0 =[
3 3 0

]T . The control action is bounded as follows:

uk ≤ 0. (5.3)

Tuning parameters for the controller are Q = 1 and R = 1.

For this system the target values for both input and state are zero, which is also a bound for

the input. Hence, the origin lies on the boundary of the feasible region. The unconstrained control

law uk = −Kxk for this system requires both positive and negative inputs. As shown in Figure 2,

the corresponding constrained control action does not become permanently active or inactive. A

logarithmic scale is used in the figure to emphasize this behavior.

The relative tolerance between the upper bound and the lower bound solutions in (4.1) is chosen

equal to ρ1 = 10−6. In Figure 1, we plot the horizon length against the relative difference between

12



the upper bound and the lower bound objective functions, obtained at time k = 0. This plot shows

that a horizon of about 70 is needed to satisfy the chosen tolerance ρ1. This relative tolerance

guarantees a precise convergence of the entire input sequence (u0, u1, . . .) to the optimal value.

However, even with a bigger tolerance (and therefore a shorter horizon), the injected input u0 is

still close to the optimal value. In fact, in Figure 2 the injected input is reported for the chosen

tolerance ρ1 and for the larger tolerance ρ2 = 10−3. These two input sequences are close to each

other except for the last part of the simulation, where the magnitude of the input is small in any

case. The output for the closed-loop system is reported in Figure 3, both for the tolerance ρ1

and ρ2. The two lines are essentially indistinguishable, showing that even a weaker convergence

tolerance produced a response close to the optimal one.

6 Conclusions

In this paper the existence and the implementation of the infinite horizon controller for the case

of active steady-state constraints has been discussed. This case is important because, in practi-

cal applications, controllers are often required to operate at the boundary of the feasible region.

For this case only suboptimal solutions were available, based on finite horizon formulations with

terminal equality constraints or infinite horizon formulations with appropriate suboptimal finite

parameterization. An iterative algorithm was presented that determines the optimal solution of

this problem within a user specified tolerance. Since the optimal infinite horizon solution is found,

the proposed controller is simple to understand and tune, and achieves better performance than

the previous solutions.
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A Quadratic Programs and Sequences of Sets: Definitions and
Theorems

A.1 Convex Quadratic Programs in `2

We consider the space `2, which is the infinite-dimensional set of objects of the form:

z = (z1, z2, z3, . . .), zi ∈ R for all i = 1, 2, . . . .
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such that
∞∑
i=1

z2
i <∞.

When equipped with the following inner product:

〈a, b〉 =
∞∑
i=1

aibi,

`2 is a separable Hilbert space [16]. We define the norm on this space in the obvious way:

‖z‖ = 〈z, z〉1/2.

Consider the following convex optimization problem over `2:

min
z

f(z) =
1
2
〈z, Uz〉+ 〈c, z〉, subject to z ∈ C, (A.1)

where

• U : `2 → `2 is a linear, self-adjoint, strictly monotone operator; that is, there is α > 0 such

that

〈z, Uz〉 ≥ α〈z, z〉, for all z ∈ `2. (A.2)

• C ⊂ `2 is convex, closed, and nonempty.

We define the normal cone to C at a point z̄ as follows:

NC(z̄) = {v | 〈v, z̄ − z〉 ≥ 0, for all z ∈ C}. (A.3)

Theorem A.1 If z∗ solves (A.1), then we have

−(Uz∗ + c) ∈ NC(z∗), (A.4)

and in particular, we have

〈Uz∗ + c, z − z∗〉 ≥ 0, for all z ∈ C. (A.5)

Proof. We can apply the Corollary on p. 52 of Clarke [17]. At the solution z∗, we have:

0 ∈ ∂f(z∗) + NC(z∗), (A.6)

where ∂f denotes the generalized gradient of f at z∗. Since f is quadratic and U has the properties

described above, we have ∂f(z∗) = {Uz∗ + c}, so that (A.4) follows immediately from (A.6). The

second claim follows from (A.3). �

Theorem A.2 The problem (A.1) has a unique minimizer z∗.
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Proof. Given any z0 ∈ C, the level set

{z | f(z) ≤ f(z0)}

is closed and bounded, by the monotonicity property (A.2). Hence f attains a minimum on this

set, say at z∗. Uniqueness of z∗ is also a consequence of monotonicity. �

Theorem A.3 Let z∗ be the solution of (A.1). Then for all other z ∈ C, we have that

‖z − z∗‖ ≤
[
2
f(z)− f(z∗)

α

]1/2

. (A.7)

Proof. Using (A.5), we have 〈c, z − z∗〉 ≥ −〈Uz∗, z − z∗〉. Hence, we have

f(z)− f(z∗) =
1
2
〈z, Uz〉 − 1

2
〈z∗, Uz∗〉+ 〈c, z − z∗〉

≥ 1
2
〈z, Uz〉 − 1

2
〈z∗, Uz∗〉 − 〈Uz∗, z − z∗〉 =

1
2
〈z − z∗, U(z − z∗)〉

≥ 1
2
α‖z − z∗‖2,

where the last inequality follows from (A.2). �

A.2 Increasing and Decreasing Sequences of Sets

We now consider monotonic sequences of subsets of `2, their limits, and the behavior of the sequence

of points obtained by minimizing the function f(z) defined in (A.1) over each of the sets in these

sequences.

Consider first a decreasing sequence of sets {ĈJ}J=1,2,... such that

each ĈJ ⊂ `2 is closed, convex, and nonempty; (A.8)

Ĉ1 ⊃ Ĉ2 ⊃ · · · . (A.9)

This sequence has a limit Ĉ defined by

Ĉ =
⋂

J=1,2,...

ĈJ ; (A.10)

see [16, p. 66]. It is clear that Ĉ too is closed, convex, and nonempty. Ĉ is simply the set of points

that belong to every set ĈJ in the sequence. We also have the following characterization.

Lemma A.1

Ĉ = {z | z = lim
J→∞

zJ , for any convergent sequence {zJ} with zJ ∈ ĈJ for all J}. (A.11)
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Proof. Assume first that z ∈ Ĉ. The trivial sequence defined by zJ ≡ z suffices to show that z

belongs to the set on the right-hand side of (A.11).

Now assume that z /∈ Ĉ. We show that there can exist no sequence {zJ} with zJ ∈ ĈJ , all J

with the property that ‖zJ − z‖ → 0.

Since z /∈ Ĉ, we have that z /∈ ĈK for some K and indeed, by closedness of ĈK , we have

dist(z, ĈK) > 0. Therefore, by the monotonicity property of the sequence {ĈJ}, we have that

z /∈ ĈJ for all J ≥ K, and in fact that

dist(z, ĈJ) ≥ dist(z, ĈK) > 0, for all J ≥ K.

It follows that for any sequence {zJ} with the property zJ ∈ ĈJ , we have that

‖z − zJ‖ ≥ dist(z, ĈJ) ≥ dist(z, ĈK) > 0, for all J ≥ K,

so we cannot have ‖z − zJ‖ → 0. �

We consider the sequence of problems P̂ (J) defined as follows

P̂ (J) : min
z

f(z) subject to z ∈ ĈJ , (A.12)

where f(z) is defined as in (A.1). By applying Theorem A.1, we can identify points ẑJ , J = 1, 2, . . .

such that ẑJ is the unique solution of P̂ (J) for each J . Similarly, we define ẑ to be the unique

minimizer of f over the limiting set Ĉ. By the decreasing property (A.9), and the definition (A.10),

we have that

f(ẑ1) ≤ f(ẑ2) ≤ · · · ≤ f(ẑ). (A.13)

In fact, we have the following result.

Theorem A.4 For ẑJ , J = 1, 2, . . . and ẑ defined in the previous paragraph, we have

lim
J→∞

ẑJ = ẑ. (A.14)

Proof. The sequence of real numbers

{f(ẑJ)}J=1,2,... (A.15)

is increasing and bounded above. Using the following argument, we can show that this sequence

{ẑJ} is Cauchy. Given any indices J1 and J2 with J1 < J2, we have that ẑJ2 is feasible in P (J1).

Hence, by applying Theorem A.3 to P (J1) with z∗ = ẑJ1 and z = ẑJ2 , we have that

‖ẑJ1 − ẑJ2‖ ≤
[
2
f(ẑJ1)− f(ẑJ2)

α

]1/2

.

Hence, for any ε > 0, there exists J(ε) such that

‖ẑJ1 − ẑJ2‖ ≤ ε, for all J1, J2 with J(ε) ≤ J1 < J2.

17



Because of this Cauchy property and the fact that `2 is a Hilbert space, the sequence {ẑJ} converges

to a limit in `2, say z∗. In fact, because of the characterization (A.11), we have z∗ ∈ Ĉ. Because

f(ẑJ) ↑ f(z∗), we have from (A.13) that f(z∗) ≤ f(ẑ). But since z∗ ∈ Ĉ and ẑ is the unique

minimizer of f over Ĉ, we must have ẑ = z∗, completing the proof. �

We next consider an increasing sequence of sets. Let {C̄J}J=1,2,... be a sequence of sets such

that

each C̄J ⊂ `2 is closed, convex, and nonempty; (A.16)

C̄1 ⊂ C̄2 ⊂ · · · . (A.17)

This sequence has a limit C̄ defined by

C̄ =
⋃

J=1,2,...

C̄J ; (A.18)

see [16, p. 66]. The set C̄ is convex and nonempty but not necessarily closed. As an example,

consider the sets defined by

C̄J = {w = (w1, w2, w3, . . . ) |w ∈ `2, wi = 0 for all i ≥ J},

which yield an increasing sequence whose limit is

C̄ = {w = (w1, w2, w3, . . . ) |w ∈ `2, wi = 0 for all i sufficiently large}.

Although the sets C̄J are closed for all J , the limit C̄ is open. The point w = (1, 1/2, 1/4, 1/8, . . . )

lies in the closure of C̄ though not in C̄ itself.

Since the limit C̄ may be an open set, the function f(z) may not attain its minimizer on this

set. We can still however show convergence of the sequence of minimizers of f over C̄J to a point

z̄ that minimizes f over some closed set containing C̄, which we denote by C∗.
Similarly to (A.12), we consider the sequence of problems P̄ (J) defined as follows

P̄ (J) : min
z

f(z) subject to z ∈ C̄J , (A.19)

where f(z) is defined as in (A.1). By applying Theorem A.1, we can identify points z̄J , J = 1, 2, . . .

such that z̄J is the unique solution of P̄ (J) for each J . We also define a point z̄ and a set C∗ as

follows:

z̄ = arg minz∈C∗ f(z), where C∗ is a set satisfying (A.20a)

C∗ is closed, C̄ ⊂ C∗, and z̄ ∈ cl(C̄). (A.20b)

(Note that since C∗ is closed and C̄ ⊂ C∗, we certainly have cl(C̄) ⊂ C∗.) Clearly, we have that

f(z̄1) ≥ f(z̄2) ≥ · · · ≥ f(z̄). (A.21)

In fact, we have the following result.
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Theorem A.5 For z̄J , J = 1, 2, . . . and z̄ defined in the previous paragraph, we have

lim
J→∞

z̄J = z̄. (A.22)

Proof. We can show that the sequence {z̄J} is Cauchy by using as similar argument as in the

proof of Theorem A.4. Hence the sequence converges, say to a point z∗. Moreover, since z̄J ∈ C̄ for

all J , we have that z∗ ∈ cl(C̄).
Because of (A.21), we have that f(z∗) ≥ f(z̄) Suppose for the moment that this inequality is

strict. Since z̄ ∈ cl(C̄), there is a sequence {yK} with yK ∈ C̄ for all K, such that yK → z̄. By the

definition (A.18), we can choose indices K and JK sufficiently large that the following properties

hold:

f(yK) < f(z∗), (A.23)

yK ∈ C̄J , for all J ≥ JK . (A.24)

In particular, we have that

f(yK) < f(z∗) ≤ f(z̄JK
),

which is a contradiction since z̄JK
is the minimizer of f over C̄JK

. Therefore, we must have

f(z∗) = f(z̄).

Since z̄ is the unique minimizer of f over the set C∗, it certainly is the minimizer of f over cl(C̄).
Since z∗ ∈ cl(C̄) and f(z∗) = f(z̄), we have z∗ = z̄, completing the proof. �

B Existence of the upper bounding problem

We show that the existence of an infinite feasible sequence for the optimal problem (2.7) implies

that the upper bounding optimization problem (3.3) is feasible for finite N . In the upper bounding

optimization problem (3.3), the use of the linear control law vk = −K̄wk requires the controller

to zero in finite time the unstable modes that are not controllable in the null space of the active

steady-state constraints. We show here the stronger result that the existence of an infinite feasible

sequence for the optimal problem (2.7) implies we can zero all unstable modes in finite time.

Without loss of generality, we make two simplifying assumptions. First, consider a Schur

decomposition of the system matrix partitioned into stable and unstable parts. We consider only

the unstable part, i.e. we consider a purely unstable system, and show we can zero the entire state

in finite time.

Second, we assume that the initial state w0 is sufficiently close to the origin that all constraint

boundaries that do not intersect the origin (i.e. constraints that are not active at steady state)

appear arbitrarily far away and can be neglected. This assumption is valid since, for any sequence

{wk, vk} feasible for (2.7), we have that limk→∞ wk = 0, limk→∞ vk = 0 and, therefore, the system

state can be brought arbitrarily close to the origin in finite time.
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B.1 Preliminary definitions

Definition B.1 (General problem) We consider the following problem:

w0 given , wk+1 = Awk + Bvk k = 0, 1, . . . , (B.1a)

D̄vk ≤ 0 k = 0, 1, . . . , (B.1b)

in which A ∈ Rn×n has all eigenvalues outside the open unit circle, i.e. |λi(A)| ≥ 1, i = 1, . . . , n,

B ∈ Rn×m and D̄ ∈ Rma×m, with ma ≤ m, and rank(D̄) = ma. We assume that a sequence

{wk, vk}∞k=0 exists such that (B.1a) and (B.1b) are satisfied and

∞∑
k=0

wT
k Qwk + vT

k Rvk <∞ (B.2)

for Q,R symmetric positive definite matrices.

Without loss of generality, we assume that D̄ =
[
Ima 0

]
. The transformation of the input u and,

consequently, of the matrix B that leads to this form is

v ← Tv =
[

D̄
D̄c

]
v, B ← BT−1, R← T−T RT−1

in which D̄c ∈ R(m−ma)×m is such that T ∈ Rm×m is invertible.

Lemma B.1 Given a nonsingular matrix A ∈ Rn×n and B ∈ Rn×n, (A,B) is controllable iff

(A−1, B) is controllable.

Proof. If (A,B) is controllable we have that:

n = rank
[
B AB · · · An−1B

]
= rank

(
An−1

[
A−n+1B A−n+2B · · · B

])
= rank

[
B A−1B · · · A−(n−1)B

]
,

which implies that (A−1, B) is controllable. Necessity is proven in an analogous way. �

Definition B.2 We define the controllability matrix of order k for (A−1, B) as

Ck =
[
B A−1B A−2B · · · A−(k−1)B

]
. (B.3)

We also define the infinite dimensional controllability matrix for (A−1, B) as

C∞ = lim
k→∞

Ck. (B.4)

The matrix C∞ has bounded elements since A has unstable eigenvalues.
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Definition B.3 We define the matrix Dk ∈ Rmak×mk as

Dk =


D̄ 0 · · · 0

0 D̄
. . .

...
...

. . . . . . 0
0 · · · 0 D̄

 ,

and the infinite dimensional matrix D∞ as:

D∞ = lim
k→∞

Dk.

B.2 Main proof

Let π∞ = (v0, v1, · · · ) ∈ `2 be an input vector that satisfies (B.1a), (B.1b) and (B.2). We can write

wk −Akw0 = Ak−1Bv0 + Ak−2Bv1 + · · ·+ Bvk−1,

or alternatively

A−(k−1)wk −Aw0 = Bv0 + A−1Bv1 + · · ·+ A−(k−1)Bvk−1.

As k →∞ we have that wk → 0 and, therefore, we have

C∞π∞ = −Aw0, (B.5a)

D∞π∞ ≤ 0. (B.5b)

Theorem B.1 Given an infinite vector π∞ ∈ `2 that satisfies (B.5), there exists a finite vector π̄N

for some N such that

CN π̄N = −Aw0, (B.6a)

DN π̄N ≤ 0. (B.6b)

Proof. Some elements of the vector π∞ may be zero. We can remove these elements from π∞ and

define a new vector π̃∞. Consequently, we remove the corresponding columns from C∞ and D∞

obtaining new matrices C̃∞ and D̃∞. If π̃∞ has a finite number of elements, the proof is complete

because we can construct π̄N from π∞ by choosing N such that vj = 0, j > N . If all elements of

π∞ are zero, the proof is also complete because w0 = 0. We assume, therefore, that π̃∞ has an

infinite number of elements. We can rewrite (B.5) as

C̃∞π̃∞ = −Aw0, (B.7a)

D̃∞π̃∞ < 0. (B.7b)

in which the strict inequality comes from the structure of D∞ and from the fact that the zero

elements of π∞ have been removed in π̃∞.
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Let l ≤ n be the rank of C̃∞. We have that there exists a M such that rank(CJ) = l for any

J ≥ M . From (B.7a) we also have that rank([C̃∞|Aw0]) = l. Given a N > M , we partition the

vector π̃∞ and the matrices C̃∞ and D̃∞ as follows

π̃∞ = (π̃N |π̃N |∞), C̃∞ = [C̃N |C̃N |∞], D̃∞ = [D̃N |D̃N |∞].

From (B.7a) we have

C̃N π̃N + C̃N |∞π̃N |∞ = −Aw0 (B.8)

We wish to construct a finite dimensional vector πN as πN = π̃N + ρN in which

ρN = (v0, v1, . . . , vM−1, 0, . . . , 0)

such that

C̃NπN = −Aw0, (B.9a)

D̃NπN < 0. (B.9b)

Using (B.7a), we have that

C̃N (π̃N + ρN ) = −Aw0 = C̃N π̃N + C̃N |∞π̃N |∞,

from which

C̃NρN = C̃N |∞π̃N |∞. (B.10)

Since the last N −M terms of ρN are zero, we can rewrite (B.10) as

C̃MρM = C̃N |∞π̃N |∞ (B.11)

Using (B.9b) instead, we obtain

D̃NρN < −D̃N π̃N (B.12)

Since N > M , we can take a sub-matrix of (B.12) and use the particular structure of D̃N to obtain:

D̃MρM < −D̃M π̃M . (B.13)

Since N > M , we have that C̃N |∞π̃N |∞ ∈ range(C̃N ) = range(C̃M ) and, therefore, (B.11) admits

solution. Let C̃+
M be a left inverse of C̃M (i.e. C̃+

M C̃M = I). One solution of (B.11) is:

ρM = C̃+
M C̃N |∞π̃N |∞. (B.14)

Since C̃N |∞π̃N |∞ → 0 as N →∞, we have that

lim
N→∞

‖ρM‖2 = 0 (B.15)

Hence, since −D̃M π̃M > 0 in (B.13), there exists N ′ such that (B.13) holds for all N ≥ N ′. Choosing

any N ≥ N ′, we have found a vector πN that satisfies (B.9a) and (B.9b). We can obtain the vector

π̄N that satisfies (B.6a) and (B.6b) by reinserting the zero elements that have been removed from

π∞ to obtain π̃∞. �
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Figure 1: Horizon length vs relative difference of objective functions
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Figure 2: Closed-loop input for Example # 1
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Figure 3: Closed-loop output for Example # 1
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